Diagnosis of Conversion Disorder Using Diffusion Tensor Tractography and Transcranial Magnetic Stimulation in a Patient with Mild Traumatic Brain Injury

SOURCE: Diagnostics. 9(4) (no pagination), 2019. Article Number: 155.

DATE OF PUBLICATION: 01 Dec 2019.

AUTHORS: Jang S.H.; Seo Y.S.

ABSTRACT: We report on a patient with mild traumatic brain injury (TBI) who was diagnosed with conversion disorder for severe weakness of an arm, which was demonstrated using diffusion tensor tractography (DTT) and transcranial magnetic stimulation (TMS). A 23-year-old right-handed female suffered from head trauma resulting from a pedestrian car accident. She underwent rehabilitative management for memory impairment and central pain. At 14 months after onset, she complained of severe weakness of her right arm, which was detected in the morning after sleeping (right shoulder abductor: 3/5, elbow flexor: 3/5, wrist extensor: 1/5, finger flexor: 1/5, and finger extensor: 1/5). Electromyography study for peripheral neuropathy performed at 2 weeks after onset of weakness showed no abnormality. On a 14-month DTT configuration, the integrities of the left corticospinal tract (CST), supplementary motor area-corticofugal tract (SMA-CFT), and dorsal premotor cortex (dPMC)-CFT were well-preserved. Significant differences were not observed for the fractional anisotropy (FA), mean diffusivity (MD), and tract volume (TV) values of the CST, SMA-CFT, and dPMC-CFT in both hemispheres between the patient and ten right-handed age- and sex-matched normal subjects (p >0.05). On a 14-month TMS study, MEPs obtained at the right abductor pollicis brevis muscle showed no abnormality. Using DTT and TMS, conversion disorder was demonstrated in a patient with mild TBI, who showed severe weakness of an arm. Our results suggest the usefulness of an evaluation of the CST and CFTs from the secondary motor areas using DTT, and the CST using TMS for patients who complain of motor weakness due to conversion disorder.

LINK TO FULL ARTICLE: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6963761/