Targeting Neuroplasticity in Patients with Neurodegenerative Diseases Using Brain Stimulation Techniques. [Review]

Source: Translational Neurodegeneration. 9(1):44, 2020 12 07.

Authors: Yuan TF; Li WG; Zhang C; Wei H; Sun S; Xu NJ; Liu J; Xu TL

Abstract: Deficits in synaptic transmission and plasticity are thought to contribute to the pathophysiology of Alzheimer’s disease (AD) and Parkinson’s disease (PD). Several brain stimulation techniques are currently available to assess or modulate human neuroplasticity, which could offer clinically useful interventions as well as quantitative diagnostic and prognostic biomarkers. In this review, we discuss several brain stimulation techniques, with a special emphasis on transcranial magnetic stimulation and deep brain stimulation (DBS), and review the results of clinical studies that applied these techniques to examine or modulate impaired neuroplasticity at the local and network levels in patients with AD or PD. The impaired neuroplasticity can be detected in patients at the earlier and later stages of both neurodegenerative diseases. However, current brain stimulation techniques, with a notable exception of DBS for PD treatment, cannot serve as adequate clinical tools to assist in the diagnosis, treatment, or prognosis of individual patients with AD or PD. Targeting the impaired neuroplasticity with improved brain stimulation techniques could offer a powerful novel approach for the treatment of AD and PD.